3,186 research outputs found

    An aggregation of juvenile Youngina from the Beaufort Group, Karoo Basin, South Africa

    Get PDF
    Main articleAn assemblage of five fully-articulated juvenile skeletons of Youngina has been recovered from the Late Permian strata of the south-western Karoo Basin. These 12-cm-long skeletons are not only the first articulated juveniles of this taxon, but also the oldest yet found in the Karoo Basin. They are preserved in overbank mudrocks of the Hoedemaker Member (Beaufort Group, Adelaide Subgroup) on the farm Leeukloof 43 in the Beaufort West district. Although they are estimated to be some three million years older than previously described Youngina, these specimens show no significant skeletal differences. The high degree of articulation and the spatial arrangement of these skeletons in a dish-shaped hollow is compelling evidence for them having huddled together within an underground burrow. Taphonomic analysis of associated fossils indicates that this was probably a mechanism to reduce water loss during drought on the ancient Karoo floodplains .Non

    The biomechanical role of the chondrocranium and sutures in a lizard cranium

    Get PDF
    The role of soft tissues in skull biomechanics remains poorly understood. Not least, the chondrocranium, the portion of the braincase which persists as cartilage with varying degrees of mineralization. It also remains commonplace to overlook the biomechanical role of sutures despite evidence that they alter strain distribution. Here, we examine the role of both the sutures and the chondrocranium in the South American tegu lizard Salvator merianae. We use multi-body dynamics analysis (MDA) to provide realistic loading conditions for anterior and posterior unilateral biting and a detailed finite element model to examine strain magnitude and distribution. We find that strains within the chondrocraniumare greatest during anterior biting and are primarily tensile; also that strain within the cranium is not greatly reduced by the presence of the chondrocraniumunless it is given the same material properties as bone. This result contradicts previous suggestions that the anterior portion (the nasal septum) acts as a supporting structure. Inclusion of sutures to the cranium model not only increases overall strain magnitudes but also leads to a more complex distribution of tension and compression rather than that of a beam under sagittal bending

    Evolutionary Signatures in the Formation of Low-Mass Protostars. II. Towards Reconciling Models and Observations

    Full text link
    A long-standing problem in low-mass star formation is the "luminosity problem," whereby protostars are underluminous compared to the accretion luminosity expected both from theoretical collapse calculations and arguments based on the minimum accretion rate necessary to form a star within the embedded phase duration. Motivated by this luminosity problem, we present a set of evolutionary models describing the collapse of low-mass, dense cores into protostars, using the Young & Evans (2005) model as our starting point. We calculate the radiative transfer of the collapsing cores throughout the full duration of the collapse in two dimensions. From the resulting spectral energy distributions, we calculate standard observational signatures to directly compare to observations. We incorporate several modifications and additions to the original Young & Evans model in an effort to better match observations with model predictions. We find that scattering, 2-D geometry, mass-loss, and outflow cavities all affect the model predictions, as expected, but none resolve the luminosity problem. A cycle of episodic mass accretion, however, can resolve this problem and bring the model predictions into better agreement with observations. Standard assumptions about the interplay between mass accretion and mass loss in our model give star formation efficiencies consistent with recent observations that compare the core mass function (CMF) and stellar initial mass function (IMF). The combination of outflow cavities and episodic mass accretion reduce the connection between observational Class and physical Stage to the point where neither of the two common observational signatures (bolometric temperature and ratio of bolometric to submillimeter luminosity) can be considered reliable indicators of physical Stage.Comment: 27 pages. Accepted for publication in Ap

    Moving beyond physical education subject knowledge to develop knowledgeable teachers of the subject

    Get PDF
    All knowledge is socially constructed, including physical education teachers’ knowledge of their subject. It is acquired from other people either formally and deliberately (e.g. by being taught) or informally and casually (e.g. by interacting with physical education teachers or playing in a sports team). The social aspects of learning appear to be particularly strong in physical education. This has implications for the development of knowledge for teaching, with trainee teachers focusing on the development of subject, and particularly content, knowledge. Focusing on subject knowledge reinforces a traditional view of physical education as it is, not as it might be to meet the needs of young people today. It is argued that attention needs to be given not only to the knowledge, skills and competencies that trainee teachers ought to develop but also to the social aspects of their learning and development and the context in which they learn. Attention also needs to be given to how the ability to think critically can be developed so that trainee teachers can become reflective practitioners able to challenge and, where appropriate, change the teaching of the subject. Only by doing this can the particularly strong socialisation which shapes the values and beliefs of physical education teachers begin to be challenged. However, as the process of developing knowledgeable teachers is ongoing it is also necessary to look beyond teacher training to continuing professional development

    Moving beyond physical education subject knowledge to develop knowledgeable teachers of the subject

    Get PDF
    All knowledge is socially constructed, including physical education teachers’ knowledge of their subject. It is acquired from other people either formally and deliberately (e.g. by being taught) or informally and casually (e.g. by interacting with physical education teachers or playing in a sports team). The social aspects of learning appear to be particularly strong in physical education. This has implications for the development of knowledge for teaching, with trainee teachers focusing on the development of subject, and particularly content, knowledge. Focusing on subject knowledge reinforces a traditional view of physical education as it is, not as it might be to meet the needs of young people today. It is argued that attention needs to be given not only to the knowledge, skills and competencies that trainee teachers ought to develop but also to the social aspects of their learning and development and the context in which they learn. Attention also needs to be given to how the ability to think critically can be developed so that trainee teachers can become reflective practitioners able to challenge and, where appropriate, change the teaching of the subject. Only by doing this can the particularly strong socialisation which shapes the values and beliefs of physical education teachers begin to be challenged. However, as the process of developing knowledgeable teachers is ongoing it is also necessary to look beyond teacher training to continuing professional development

    Standardization of electroencephalography for multi-site, multi-platform and multi-investigator studies: Insights from the canadian biomarker integration network in depression

    Get PDF
    Subsequent to global initiatives in mapping the human brain and investigations of neurobiological markers for brain disorders, the number of multi-site studies involving the collection and sharing of large volumes of brain data, including electroencephalography (EEG), has been increasing. Among the complexities of conducting multi-site studies and increasing the shelf life of biological data beyond the original study are timely standardization and documentation of relevant study parameters. We presentthe insights gained and guidelines established within the EEG working group of the Canadian Biomarker Integration Network in Depression (CAN-BIND). CAN-BIND is a multi-site, multi-investigator, and multiproject network supported by the Ontario Brain Institute with access to Brain-CODE, an informatics platform that hosts a multitude of biological data across a growing list of brain pathologies. We describe our approaches and insights on documenting and standardizing parameters across the study design, data collection, monitoring, analysis, integration, knowledge-translation, and data archiving phases of CAN-BIND projects. We introduce a custom-built EEG toolbox to track data preprocessing with open-access for the scientific community. We also evaluate the impact of variation in equipment setup on the accuracy of acquired data. Collectively, this work is intended to inspire establishing comprehensive and standardized guidelines for multi-site studies

    Shared genetic influences between dimensional ASD and ADHD symptoms during child and adolescent development

    Get PDF
    Abstract Background Shared genetic influences between attention-deficit/hyperactivity disorder (ADHD) symptoms and autism spectrum disorder (ASD) symptoms have been reported. Cross-trait genetic relationships are, however, subject to dynamic changes during development. We investigated the continuity of genetic overlap between ASD and ADHD symptoms in a general population sample during childhood and adolescence. We also studied uni- and cross-dimensional trait-disorder links with respect to genetic ADHD and ASD risk. Methods Social-communication difficulties (N ≤ 5551, Social and Communication Disorders Checklist, SCDC) and combined hyperactive-impulsive/inattentive ADHD symptoms (N ≤ 5678, Strengths and Difficulties Questionnaire, SDQ-ADHD) were repeatedly measured in a UK birth cohort (ALSPAC, age 7 to 17 years). Genome-wide summary statistics on clinical ASD (5305 cases; 5305 pseudo-controls) and ADHD (4163 cases; 12,040 controls/pseudo-controls) were available from the Psychiatric Genomics Consortium. Genetic trait variances and genetic overlap between phenotypes were estimated using genome-wide data. Results In the general population, genetic influences for SCDC and SDQ-ADHD scores were shared throughout development. Genetic correlations across traits reached a similar strength and magnitude (cross-trait r g ≤ 1, p min  = 3 × 10−4) as those between repeated measures of the same trait (within-trait r g ≤ 0.94, p min  = 7 × 10−4). Shared genetic influences between traits, especially during later adolescence, may implicate variants in K-RAS signalling upregulated genes (p-meta = 6.4 × 10−4). Uni-dimensionally, each population-based trait mapped to the expected behavioural continuum: risk-increasing alleles for clinical ADHD were persistently associated with SDQ-ADHD scores throughout development (marginal regression R 2 = 0.084%). An age-specific genetic overlap between clinical ASD and social-communication difficulties during childhood was also shown, as per previous reports. Cross-dimensionally, however, neither SCDC nor SDQ-ADHD scores were linked to genetic risk for disorder. Conclusions In the general population, genetic aetiologies between social-communication difficulties and ADHD symptoms are shared throughout child and adolescent development and may implicate similar biological pathways that co-vary during development. Within both the ASD and the ADHD dimension, population-based traits are also linked to clinical disorder, although much larger clinical discovery samples are required to reliably detect cross-dimensional trait-disorder relationships

    Comparative cranial biomechanics in two lizard species: impact of variation in cranial design

    Get PDF
    Cranial morphology in lepidosaurs is highly disparate and characterised by the frequent loss or reduction of bony elements. In varanids and geckos, the loss of the postorbital bar is associated with changes in skull shape, but the mechanical principles underlying this variation remain poorly understood. Here, we sought to determine how the overall cranial architecture and the presence of the postorbital bar relate to the loading and deformation of the cranial bones during biting in lepidosaurs. Using computer-based simulation techniques, we compared cranial biomechanics in the varanid Varanus niloticus and the teiid Salvator merianae, two large, active foragers. The overall strain magnitude and distribution across the cranium were similar in the two species, despite lower strain gradients in V. niloticus. In S. merianae, the postorbital bar is important for resistance of the cranium to feeding loads. The postorbital ligament, which in varanids partially replaces the postorbital bar, does not affect bone strain. Our results suggest that the reduction of the postorbital bar impaired neither biting performance nor the structural resistance of the cranium to feeding loads in V. niloticus. Differences in bone strain between the two species might reflect demands imposed by feeding and non-feeding functions on cranial shape. Beyond variation in cranial bone strain related to species-specific morphological differences, our results reveal that similar mechanical behaviour is shared by lizards with distinct cranial shapes. Contrary to the situation in mammals, the morphology of the circumorbital region, calvaria and palate appears to be important for withstanding high feeding loads in these lizards
    corecore